Lipids possess low polarity and limited solubility in water. Their plasma concentration is about 500-600 mg/100 ml, strongly associated with specific proteins. Lipoproteins are classified on the basis of their electrophoretic properties into: α- (HDL), pre-β- (VLDL), β- (LDL) lipoproteins and chylomicrons. The lipid components of lipoproteins are (i) cholesterol (about 70 % of total amount of cholesterol is esterified with unsaturated fatty acids) (ii) triacylglycerols and (iii) phospholipids.

Lipids are transported in the blood as lipoproteins, containing a core of lipids (dietary triacylglycerols, cholesterol and endogenous lipids) surrounded by a sphere of polar lipids and apoproteins. Lipoproteins have two major functions: (i) solubilization of lipids, and (ii) regulation of lipid transport of lipids in and out of specific target cells and tissues.

The cholesterol (C\textsubscript{17}H\textsubscript{46}O, MW: 386.6) is an amphipatic lipid, component of the lipoprotein particles of plasma and structural component of plasma membranes of the cells. About half of the cholesterol in the body is synthesized, while the other half is absorbed from food. A part of the cholesterol is excreted in the bile fluid. The conversion of the cholesterol to bile salts helps to solubilize and digest lipids. The transport of cholesterol by VLDL in the circulation to the tissues plays an important role in the membrane formation of cells and in the biosynthesis of steroid hormones.

The rate of biosynthesis of cholesterol depends on the interaction between the amount of the dietary cholesterol and its endogenous cholesterol biosynthesis.

Exogenous (dietary) fat is hydrolysed in the intestine, absorbed, then resynthesized in the mucosal cells. The lipids are transported as chylomicrons. Endogenous triglycerides are produced by the liver and adipose tissue cells. Their transport is in association with VLDL.

Statistical data show increased occurrence of heart and vascular diseases. There is a relationship between the elevation of concentration of some plasma lipid parameters and atherosclerosis. Hyper- and dyslipoproteinemias play an essential role as a risk factor. The data show that (i) in 70 % of patients with arterial occlusion hyperlipoproteinemia is detectable, (ii) lipids deposited in the connective tissue of the arterial wall show plasma lipoprotein origin (iii) about 70 % of patients with primary hyperlipoproteinemia show coronary sclerosis and/or myocardial infarction, (iv) there is a correlation between the frequency of myocardial infarction and the reduced plasma lipid concentration during the therapy of patients with hyperlipoproteinemia.

200-300 or >300 mg/ml of cholesterol level was determined at 60 % or 25 % of patients who died in myocardial infarction, respectively. The prognosis of myocardial infarction also needs the evaluation of both HDL- and LDL-cholesterol level. The lower the HDL-cholesterol level the higher is the risk of myocardial infarction. The determination of HDL-cholesterol is important for patients who have hypercholesterolemia, as well as hypertriglyceridemia. Simultaneously elevated levels of serum triglycerids and decreased levels of HDL-cholesterol indicate high coronary risk.
Determination of LDL-cholesterol is important for patients (i) of young ages with vascular diseases, (ii) with xanthomas, and (iii) secondary hypercholesterolemias. Determination of serum triglycerid level is important in patients (i) with decreased HDL-cholesterol level, (ii) with secondary hypertriglyceridemia, and (iii) with occlusion of peripheral arteries. Table 2 summarises the data of lipids and lipoproteins influencing the atherosclerotic risk.

<table>
<thead>
<tr>
<th></th>
<th>The atherosclerotic risk is</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>normal</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>< 220</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>< 150</td>
</tr>
<tr>
<td>LDL-cholesterol</td>
<td>< 150</td>
</tr>
<tr>
<td>HDL-cholesterol m</td>
<td>> 55</td>
</tr>
<tr>
<td>HDL-cholesterol w</td>
<td>> 65</td>
</tr>
</tbody>
</table>

m = men w = women

Table 2: Data of lipid and lipoprotein components of plasma influencing atherosclerotic risk at normal, slightly enhanced and enhanced atherosclerotic risk. Data are given as mg/100 ml.

DETERMINATION OF THE CONCENTRATION OF SERUM CHOLESTEROL

The concentration of total cholesterol, HDL-cholesterol and triglycerol of both normal and "ill" patients will be determined. VLDL and LDL fraction of plasma in the presence of Ca/Mg/Mn ions and polyanions/sulfated polyanions precipitates. After centrifugation HDL-cholesterol content of the supernatant will be determined.

Principle of the determination of cholesterol

Cholesterol esters will be hydrolyzed by cholesterol esterase. Cholesterol will be oxidised into cholest-4-en-3-on and \(\text{H}_2\text{O}_2 \) by bacterial cholesterol oxidase. \(\text{H}_2\text{O}_2 \) in the presence of phenol and amino-4- antipyrin forms a complex of red color showing absorption maximum between 500-550 nm.

\[
\text{cholesterol esterase} \\
\text{cholesterol ester} \quad \xrightarrow{\text{cholesterol esterase}} \quad \text{cholesterol} + \text{fatty acids}
\]

\[
\text{cholesterol oxidase} \\
\text{cholesterol} \quad \xrightarrow{\text{cholesterol oxidase}} \quad \text{cholest-4-en-3-on} + \text{H}_2\text{O}_2
\]

\[
\text{peroxydase} \\
\text{H}_2\text{O}_2 + \text{phenol} + \text{amino-4-antipyrin} \quad \xrightarrow{\text{peroxydase}} \quad \text{quinonimine} + 2 \text{H}_2\text{O}
\]
Determination of the serum cholesterol level (total)

Solutions

1.) Reagent #1: 50 mmol/l PIPES buffer pH = 6.9
 24 mmol/l phenol

2.) Reagent #2: 250 U/l cholesterol esterase
 250 U/l cholesterol oxydase
 1000 U/l peroxydase
 0.5 mmol/l amino-4-antipyrin
 2.5 mmol/l NaCl

3.) Reagent#3: standard solution of cholesterol
 (5.17 mmol/l = 200 mg/100 ml)

4.) Serum sample - normal level of cholesterol
 - elevated level of cholesterol

Dissolve Reagent #2 in Reagent #1 = Reagent1+2

Experiment

Prepare the following solutions according to the table below

<table>
<thead>
<tr>
<th>Solution / #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent 1+2.</td>
<td>1 ml</td>
<td></td>
<td>1 ml</td>
<td>1 ml</td>
</tr>
<tr>
<td>Cholesterol Stotal</td>
<td>-</td>
<td>20 µl</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Sample (normal)</td>
<td>-</td>
<td></td>
<td>20 µl</td>
<td>-</td>
</tr>
<tr>
<td>Sample (ill)</td>
<td>-</td>
<td></td>
<td></td>
<td>20 µl</td>
</tr>
<tr>
<td>Distilled water</td>
<td>20 µl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Shake the tubes well and incubate them for 5 min at 37°C. Read the optical density of the samples (A) at 500 nm. Tube #1 serves as blank
Calculation

The concentration of cholesterol present in the samples can be calculated from the measured absorbances of the samples and of the standard using the following equation:

\[
\text{concentration} = \frac{A_{\text{serum}}}{A_{\text{standard}}} \times n
\]

\(n = 5.17 \rightarrow \text{mmol/l}, \quad n = 200 \rightarrow \text{mg/100 ml}, \quad n = 2 \rightarrow \text{g/l} \)

Determination of the serum HDL cholesterol level

Separation of HDL fraction

HDL fraction will be precipitated in the presence of phosphotungstic acid-MgCl₂. After centrifugation HDL-cholesterol content of the supernatants will be determined according to the method described in point 2.2.

Reagents

- 2 M MgCl₂ solution
- Precipitating reagent: 32 g/l phosphotungstic acid:0.4 mmol/l MgCl₂ 4:1
- Plasma or serum of normal "ill" patients.

Separation procedure

Add 500 µl plasma of normal and "ill" patient, resp.,

50 µl precipitating reagent into marked Eppendorf tubes.

Mix the samples thoroughly and centrifuge them at 10 000 RPM for 15 min at 4°C. After centrifugation the supernatant must be "clear". Pipette supernatants into test tubes and determine concentration of HDL-cholesterol.

Solutions

- **Reagent#1**: 50 mmol/l PIPES buffer pH=6.9
 24 mmol/l phenol
- **Reagent#2**: 250 U/l cholesterol esterase
 250 U/l cholesterol oxydase
 1000 U/l peroxidase
 0.5 mmol/l amino-4-antipyrin
 2.5 mmol/l NaCl
Serum samples: (normal level of cholesterol, elevated level of cholesterol)
presumably with precipitating reagent (see separation of HDL fraction)

Experiment

<table>
<thead>
<tr>
<th>Solution / #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent 1+2.</td>
<td>1 ml</td>
<td>1 ml</td>
<td>1 ml</td>
<td>1 ml</td>
</tr>
<tr>
<td>Cholesterol St_{HDL}</td>
<td>-</td>
<td>50 µl</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sample (normal)</td>
<td>-</td>
<td>-</td>
<td>50 µl</td>
<td>-</td>
</tr>
<tr>
<td>Sample (ill)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50 µl</td>
</tr>
<tr>
<td>Distilled water</td>
<td>50 µl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Shake the tubes well and incubate them for 5 min at 37°C. Read the optical density of the samples (A) at 500 nm.
Tube #1 serves as blank

Calculation:

The concentration of cholesterol present in the samples can be calculated from the measured absorbances of the samples and of the standard using the following equation:

\[
\text{concentration} = \frac{A_{\text{serum}}}{A_{\text{standard}}} \times n
\]

\(n = 1.3 \rightarrow \text{mmol/l} \quad \text{or} \quad n = 50 \rightarrow \text{mg/100 ml}\)

DETERMINATION OF SERUM TRIGLYCERIDES

Principle of determination

\[
\text{lipoprotein lipase} \\
\text{Triglyceride} \rightarrow \text{glycerol + fatty acids}
\]

\[
\text{glycerol kinase} \\
\text{Glycerol + ATP } \xrightarrow{\text{Mg}^{2+}} \text{glycerol-3-phosphate + ADP}
\]

\[
\text{Glycerol-3-phosphate-}
\text{glycerol-3-phosphate + O}_2 \xrightarrow{\text{oxydase}} \text{dihydroxi-acetonephospate + H}_2\text{O}_2
\]

\[
\text{peroxydase} \\
\text{H}_2\text{O}_2 + \text{amino-4-antipyrine + ESPAS} \rightarrow \text{red derivative of quinone + 4 H}_2\text{O}
\]

ESPAS: N-ethyl-N-sulfopropyl-m-anizidine
Solutions

1.) Reagent #1 50 mmol/l PIPES buffer pH = 7.5
 1 mmol/l N-ethyl-N-sulfopropyl-m-anizidine (ESPAS)

2.) Reagent #2 1100 U/l lipoprotein lipase
 800 U/l glycerol kinase
 3000 U/l glycerol-phosphate oxydase
 350 U/l peroxydase
 0.7 mmol/l 4 amino-antipyrine
 0.3 mmol/l ATP

3.) Reagent #3 standard solution of glycerol
 (2.28 mmol/l = 200 mg/100 ml)

4.) Serum samples - one with normal level of triglyceride
 - one with elevated level of triglyceride

Dissolve Reagent #2 in 10 ml of Reagent #1 = Reagent1+2

Experiment

Prepare the following tubes:

<table>
<thead>
<tr>
<th>Solution / #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent 1+2.</td>
<td>1 ml</td>
<td>1 ml</td>
<td>1 ml</td>
<td>1 ml</td>
</tr>
<tr>
<td>TAG Standard (</td>
<td>-</td>
<td>20 μl</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sample (normal)</td>
<td>-</td>
<td>-</td>
<td>20 μl</td>
<td>-</td>
</tr>
<tr>
<td>Sample(ill)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20 μl</td>
</tr>
<tr>
<td>Destiled water</td>
<td>20 μl</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Shake the tubes well, incubate them for 5 min. at 37°C. Read the optical density of the samples (A) at 545 nm. Tube#1 serves as blank.

Calculation

The concentration of triglycerids present in the samples can be calculated from the measured absorbances of the samples and of the standard using the following equation:
Determination of plasma cholesterol and triglyceride level

![Equation](image)

\[n = 2.28 \rightarrow \text{mmol/l}, \quad n = 200 \rightarrow \text{mg/100 ml}, \quad n = 2 \rightarrow \text{g/l} \]

Calculation of LDL-cholesterol concentration of samples

Calculate the LDL-cholesterol content of samples according to the following equation:

\[
\text{LDL-cholesterol} = \text{total cholesterol} - (\text{HDL-cholesterol} + \text{triglyceride} / 5)
\]

Do not use this equation at 400 mg/ml or higher concentration of triglycerides or for data of samples of patients with hyperlipoproteinemia type I and III! LDL-cholesterol determination also can be carried out at pH 5.12 (isoelectric precipitation with heparin).

Determination of lipid constituents in plasma or serum are normally done on blood drawn from patients fasting for 12 or 16 hours. The "normal" value of serum cholesterol and triglycerides varies individually and with ages. Maximal concentration of lipids can be measured in winter.

Questions

1.) Explain the data of "ill" sample (triglycerid, total-, HDL- and LDL-cholesterol)

2.) How can the lipid content of hyperlipidemic plasma be decreased?